Antigen-specific T cell redirectors (ATR) for antigen-specific redirection of T cells to tumors
نویسندگان
چکیده
Immunotherapy is the modulation of a patient’s immune system to treat illness. Unfortunately many T cell based attempts have failed due to the fact that existing tumorspecific T cells are mostly anergic or tolerized and ex vivo generated T cells are often already of exhausted phenotype. Therefore, investigators have developed alternative approaches including bispecific antibody technology to redirect fully functional non-tumor specific T cells to the tumor. This has been primarily accomplished through targeting CD3, which is expressed on all T cells to engage and redirect them towards a molecule that is expressed on the tumor cells. Here we present a novel nanoparticle based approach to selectively target cytotoxic T cells (CTL) and re-direct them to kill tumors, termed ATR (Antigen-specific T cell Redirectors). ATR were generated by coupling either MHC-Ig dimer or clonotypic anti-TCR antibody 1B2 to target the effector T cell population and an anti-CD19 to re-direct those to CD19+ tumor target cells onto 50-100nm nanoparticles. Flow cytometry and microscope based data confirm that the described ATR phenotype efficiently and stably stain tumor and T cells in a dose dependent manner, and ATR mediate antigen-specific conjugate formation of effector T cells and tumor target cells. We further developed two clinically relevant protocols to test and optimize our ATR in vitro. First a pre-treatment approach in which the effector T cells are pre-incubated with ATR mimicking an adoptive transfer approach and second a co-culture protocol that mimics an active immunotherapy approach of direct ATR injection. Antigen-specific ATR mediated redirection of T cells to tumor target cells was demonstrated in Cr-release killing assays at low E:T ratios. Variation of ATR target-cell: effector-cell targeting molecule ratio could further increase efficacy. Finally, intra tumoral ATR injection induced T cell re-direction and reduced tumor growth in a s.c. Raji/SCIDbeige treatment model. In summary this data demonstrates that ATR target and redirect antigen-specific CTL to tumor cells that would otherwise not be recognized and mediates their lysis. ATR can be used to develop new innovative immunotherapeutic approaches for all cancers that can be targeted with antibodies or antibody-like molecules. Furthermore, ATR could also be used in conjunction with virus-specific immunization to specifically increase the targeted CTL population. Ultimately, we expect ATR and their potential for clinical applications to increase our understanding of tumor immunotherapy through T cell redirection.
منابع مشابه
Antigen-specific T cell Redirectors: a nanoparticle based approach for redirecting T cells
Redirection of T cells to target and destroy tumors has become an important clinical tool and major area of research in tumor immunology. Here we present a novel, nanoparticle-based approach to selectively bind antigen-specific cytotoxic T cells (CTL) and redirect them to kill tumors, termed ATR (Antigen-specific T cell Redirectors). ATR were generated by decorating nanoparticles with both an a...
متن کاملبررسی تأثیر سرم موش حامله بر روی سلولهای دندریتیک در القاء تحریک لنفوسیتهای T و تولید سیتوکینهای IL-10 و IFN-γ Dendritic Cells and Antigen Specific T Cell Responses: Effect of Pregnant Mouse Serum
Background & Aim: Tolerance to the semi-allogenic fetal graft by the maternal immune system is a medical enigma that has stimulated investigations for a half of century. Several hypotheses have been proposed to explain the tolerance of mother to the fetus. The successful pregnancy is proposed and proved by many scientists to be a Th2 dominant phenomenon. This hypothesis is proved in most as...
متن کاملEngineered Jurkat Cells for Targeting Prostate-Specific Membrane Antigen on Prostate Cancer Cells by Nanobody-Based Chimeric Antigen Receptor
Background: Recently, modification of T cells with chimeric antigen receptor (CAR) has been an attractive approach for adoptive immunotherapy of cancers. Typically, CARs contain a single-chain variable domain fragment (scFv). Most often, scfvs are derived from a monoclonal antibody of murine origin and may be a trigger for host immune system that leads to the T-cell clearance. Nanobody is a spe...
متن کاملAdvancing Chimeric Antigen Receptor-Engineered T-Cell Immunotherapy Using Genome Editing Technologies: Challenges and Future Prospects
Chimeric antigen receptor engineered-T (CAR-T) cells also named as living drugs, have been recently known as a breakthrough technology and were applied as an adoptive immunotherapy against different types of cancer. They also attracted widespread interest because of the success of B-cell malignancy therapy achieved by anti-CD19 CAR-T cells. Current genetic toolbox enabled the synthesis of CARs ...
متن کاملPriming Hepatitis B Surface (HBsAg)- and Core Antigen (HBcAg)-Specific Immune Responses by Chimeric, HBcAg with a HBsAg ‘a’ Determinant
We developed an immunogen to stimulate multivalent immunity against hepatitis B surface antigen (HBsAg) and hepatitis B core antigens (HBcAg). Immune responses specific for both HBsAg and HBcAg play an important role in controlling the infection. HBsAg-specific antibodies mediate elimination of virions at an early stage of infection and prevent the spread of virus. The immunogen was constructed...
متن کامل